Three Proofs of the Inequality e < (1 + (1/n))n+0.5

نویسنده

  • Sanjay Kumar Khattri
چکیده

Let us see the motivation behind the above result. The reader can observe that the limit (2) is modestly different than the classical limit (1). Let us approximate e from these two limits using n = 1000. From the classical limit, we get e ≈ 2.71692393; which is accurate only to 3 decimal places. From the new limit (2), we get e ≈ 2.71828205; which is e accurate to 6 decimal places. Thus, the new limit appears to be a big improvement over the classical result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Material for ” Combinatorial multi - armed bandit

We use the following two well known bounds in our proofs. Lemma 1 (Chernoff-Hoeffding bound). Let X1, · · · , Xn be random variables with common support [0, 1] and E[Xi] = μ. Let Sn = X1 + · · ·+Xn. Then for all t ≥ 0, Pr[Sn ≥ nμ+ t] ≤ e−2t /n and Pr[Sn ≤ nμ− t] ≤ e−2t /n Lemma 2 (Bernstein inequality). Let X1, . . . , Xn be independent zero-mean random variables. If for all 1 ≤ i ≤ n, |Xi| ≤ k...

متن کامل

Material for ” Combinatorial multi - armed bandit : general framework , results and applications

We use the following two well known bounds in our proofs. Lemma 1 (Chernoff-Hoeffding bound). Let X1, · · · , Xn be random variables with common support [0, 1] and E[Xi] = μ. Let Sn = X1 + · · ·+Xn. Then for all t ≥ 0, Pr[Sn ≥ nμ+ t] ≤ e−2t /n and Pr[Sn ≤ nμ− t] ≤ e−2t /n Lemma 2 (Bernstein inequality). Let X1, . . . , Xn be independent zero-mean random variables. If for all 1 ≤ i ≤ n, |Xi| ≤ k...

متن کامل

A Note on Carleman’s Inequality

n=1 an, with the constant e best possible. There is a rich literature on many different proofs of Carleman’s inequality as well as its generalizations and extensions. We shall refer the readers to the survey articles [7] and [5] as well as the references therein for an account of Carleman’s inequality. From now on we will assume an ≥ 0 for n ≥ 1 and any infinite sum converges. Our goal in this ...

متن کامل

Materials for “ Statistical - Computational Phase Transitions in Planted Models : The High - Dimensional Setting ”

We provide the proofs for the theorems in the main paper. 1 Proofs for Planted Clustering In this section, Theorems 1–6 refer to the theorems in the main paper. Equations are numbered continuously from the main paper. We let n1 := rK and n2 := n − rK be the numbers of nonisolated and isolated nodes, respectively. 1.1 Proof of Theorem 1 The proof relies on information theoretical arguments and t...

متن کامل

Fractional Hermite-Hadamard type inequalities for n-times log-convex functions

In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2010